PUBLICATIONS
The impacts of climate change on thermal stratification and dissolved oxygen of the Mississippi lake, Canada
Abstract:
This study aims to examine climate change’s effects on the Mississippi lake thermal structure and dissolved oxygen (DO) for baseline (1986-2005) and future (2081-2100) periods. Future meteorological variables are derived from the second-generation Canadian Earth System Model (CanESM2) under three emission scenarios (RCP2.6, RCP4.5, and RCP8.5). Water quantity components are assessed using the Thornthwaite monthly water balance model (TMWB) accompanied by an Artificial Neural Network method. Water quality is also analyzed using a calibrated CE-QUAL-W2 model in 2017 and 2018. The baseline average surface water temperature of 14.6°C would increase by 9.0%, 9.2%, and 18.4% under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Analogously the baseline average hypolimnetic DO of 7.1mg/L would decrease by 1.4%, 6.2%, and 14.3% in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. A rise in water temperature and subsequent diminish in DO under future scenarios, especially in late summer, would threaten the sustainability of warm-water fish species in the hypolimnion.
Reservoir water-quality simulation using simplified mathematical models (case study: Seymareh Reservoir)
Abstract
In this research, the performance of simple mathematical models was evaluated for predicting total dissolved solids (TDS), biochemical oxygen demand (BOD) and nitrate (NO3–) in a case study, the Seymareh Reservoir located in the south-west of Iran. The accuracy of the mathematical models was compared with a two-dimensional model, called CE-Qual-W2, and real observations. The models were considered as two different input-data scenarios and one scenario for applied mathematical equations (completely mixed reactor). The modelling period was from October 2012 to September 2013. The results of the simple mathematical models show an acceptable performance with the mean relative error (MRE) of 10.8–73.8 compared with the complex CE-Qual-W2 model, whereas they require fewer input data and take less time to execute. To verify the accuracy of the equations, the results were also compared with the sampling data from the reservoir. The best performance of the proposed mathematical models showed a MRE of ~10.8%, 31.5% and 16.5% for TDS, BOD and NO3– respectively. These findings suggest using such simple models for screening/feasibility studies and also to model water quality in several dams across the basin to save time and cost.
Neural Network downscaling and projection of Future daily Air Temperature Changes at Ottawa McDonald weather station
از آنجا که تغییر اقلیم یکی از مهمترین عامل تهدیدآمیز زندگی بشر در قرن بیست و یکم شناختهشده است، پیشبینی شرایط اقلیمی آینده در سراسر مناطق کره زمین در راستای مدیریت و برنامهریزی طرحهای عمرانی امری ضروری است. خروجیهای مدلهای گردش عمومی جو به عنوان منبع اصلی شبیهسازی اقلیم، دادههای بزرگمقیاس و فاقد دقت مکانی و زمانی مناسب جهت استفاده در مطالعات ناحیهای هستند. روش ریزمقیاسنمایی راهکار رفع این محدودیتها است. در این تحقیق، از دادههای مشاهداتی دما و پوشش ابر روزانه ایستگاه سینوپتیک مکدونالد اتاوا در دوره پایه 2005-1986 و دادههای مدل اقلیمی CanESM2 تحت سه سناریو RCP2.6، RCP4.5 و RCP8.5 در دوره آتی 2100-2081 طبق گزارش پنجم سازمان بینالمللی تغییراقلیم استفاده گردید. خروجی هریک از سناریوهای آتی انتشار به کمک مدل شبکه عصبی به مقیاس منطقهای تبدیل شد. نتایج نشان داد ساختار مدل شبکه عصبی مقادیر شاخصهای RMSE و R2 را برای دادههای تست به ترتیب برابر 1.66 و 0.66 نشان میدهد. نتایج حاکی از افزایش 2.31، 3.95 و 6.12 درجه سانتیگراد در دمای متوسط روزانه مدل CanESM2 تحت هریک از سناریوهای RCP2.6، RCP4.5 و RCP8.5 در طول دوره آتی 2100-2081 نسبت به دوره پایه 2005-1986 است.